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Abstract

Mass transfer with a heterogeneous chemical reaction of the first order in a wall jet flow for non-Newtonian power-
law fluids is investigated. This problem is solved by the method of Laplace transform following the approach suggested
by Apelblat [Chem. Eng. J. 19 (1980) 19]. The solution is obtained in a closed analytical form.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Mass transfer with a heterogeneous chemical reaction
of the first order occurs in chemical engineering and
heterogeneous catalysis. The solution of a mass transfer
problem coupled with an irreversible chemical reaction
of the first order at a surface for a flow with a constant
velocity was obtained in [1,2] by Apelblat. Apelblat [1]
found the exact analytical solutions of a mass transfer
problem with a heterogeneous chemical reaction of the
first order for Couette flow and for a flow with a moving
interface or a generalized Couette flow. In [2] the role of
molecular diffusion in the direction of the convective
transport was investigated. Diffusion with interfacial
chemical reaction in a laminar channel flow was inves-
tigated by Cowherd and Haelscher [3]. Ghez [4] con-
sidered mass transport in a multicomponent system with
a surface chemical reaction of the first order. In [1,5,6] a
problem of mass transfer with a first-order chemical
reaction at the surface between a plate and infinitive

* Corresponding author. Tel.: +972-7-647-7078; fax: +972-8-
647-2813.

E-mail addresses: elperin@menix.bgu.ac.il (T. Elperin), fo-
minykh@bgumail.bgu.ac.il (A. Fominykh), zakhar@nace.ac.il
(Z. Orenbakh).

fluid flow was solved analytically by three different
methods. In [7,8] the approach suggested in [1] for the
solution of mass transfer problem with the first-order
chemical reaction at the interface in the boundary layer
flow was applied for the solution of the similar problem
for Glauert flow and Falkner—Skan flow of a Newtonian
fluid. The velocity components in the equation of con-
vective diffusion used in [7,8] were adopted from [9-11].
A convective heat transfer problem with mixed bound-
ary conditions has the same mathematical form as a
convective mass transfer problem with a heterogeneous
chemical reaction of the first order. In all these studies
the analysis of mass transfer problems under conditions
of intermediate kinetics was restricted to a case of
Newtonian fluids. In the present study we considered the
laminar plane jet flow of a non-Newtonian power-law
fluid.

2. Formulation of the problem

Consider mass transfer between a solid surface and
an adjacent laminar wall jet flow of a non-Newtonian
power-law fluid. Semi-infinite jet emerges from a thin
slot and spreads along the surface (see Fig. 1). The
developed flow can be determined as a superposition of
two flows: a flow over a semi-infinite plane and a jet flow
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Fig. 1. Scheme of wall jet flow.

in an infinite space. The soluble material with concen-
tration c(x,y) flows with a fluid and is dispersed under
the combined effects of diffusion and chemical reaction.
The hydrodynamic problem for a plane wall jet flow of a
power-law fluid in a semi-infinite domain of fluid was
solved in [12]. The following expressions for the velocity
components in x and y directions were derived:
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n—similarity variable, k—power-law consistency index,
n—power-law behavior index in the constitutive relation
for power-law fluids t,, = k(du/dy)", p—liquid density,
m—mass flow rate for the jet slot, F(co)—the value of
F(n) at the boundary layer edge where n =1#,. The
unknown function F(#) is determined from the solution
of an ordinary differential equation that was derived in
[13]:
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where F(0) =F'(0) =0, F"(0)=1 and F'(o0) =0,
primes denote derivatives with respect to 7. For a case of
large  Schmidt  number,  Sc = (sn/ps)>" /.
(k/p)* "V /(D - 5"~ D/ where § is a jet slot height,
D——coeflicient of diffusion, the thickness of the concen-
tration boundary layer is considerably less than that of
the viscous boundary layer [6]. In this case it is reason-
able to assume the linear dependence of the longitudinal

velocity component inside a concentration boundary
layer upon y, i.e.,
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where shear stress is determined as t(x) =
kA" B2a" (k[ p) "GtV g — F7(0). The transver-
sal velocity component is found from the equation of
continuity: 0u/0x + 0v/dy = 0. At steady state, neglect-
ing diffusion in the direction of the convective transport,
the mass transfer is governed by the following convec-
tive—diffusion equation:
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with the following initial and boundary conditions
c=c¢y forx=0andy>0, (5)
c=c¢y forx>0andy— oo, (6)
Dg—;:ksc forx >0 and y =0, (7)

where c(x,y) is a molar concentration at x, y, cp—con-
centration in the bulk of liquid, k—rate constant of a
surface chemical reaction.

3. Solution

To solve the boundary value problem (4)—(7) let us
introduce new variables, related to x and y by the fol-
lowing formulas (see [6]):
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where X and Y are transformed coordinates in the
direction parallel and normal to the interface,
o =224Y2B,a" > D(k/p)”"*"*". Then Eq. (4) reduces
to Leveque equation
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where C = ¢ — ¢y. The boundary conditions (5)—(7) in
the new variables read:

C=0 forX=0and Y =0, (10)
C=0 forX >0and Y — oo, (11)
275 = BX c\ﬁ%ﬁﬁzc + BX cﬁ%’@“&zco for Y =0, (12)
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Applying the Laplace transform to Eq. (9), using the
boundary conditions (10), (11) and following [1], one
obtains:
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where ¢ = 2u'/? - Y32 /3, J; ;5(¢p)—Bessel function of the
first kind. The unknown function G(X) is determined
from the remaining boundary condition (12). Egs. (12)
and (13) yield the following integral Abel equation for
evaluating G(X):
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where y = 3%°.2ncyf, I'(z)—gamma function. The
solution of this Abel equation has the following form
(for details see [14], Chapter 6):
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Eq. (15) is valid only for n > 0.7. Expressing the integral
in Eq. (15) through the gamma function (see, e.g., [15])
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Fig. 2. Dependence of the dimensionless mass flux
(1 — q/ksco)/2s vs. dimensionless coordinate X for Re = 10,
Sc =500, Eq. (17): (1) n=0.75, Da=0.5; (2) n=0.75,
Da=1.0; 3 n=0.75, Da=1.5; (4) n=1.0, Da=0.5; (5)
n=1.0,Da=1.0;(6)n=1.0,Da=1.5;(7)n=1.75Da = 0.5,
®)n=1.75 Da=1.0; (9) n=1.75, Da = 1.5.

W, m(z)—Whittaker function. From Eq. (16) we obtain
the explicit formula for the mass flux density at a wall:
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where  Da = ky0/D—Damkohler  number, Re=
(1/pd)*~"8"(k/p)~'—Reynolds number, ¥ = x/4,
(18)
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and calculating the integrals in Eq. (13) we arrive at the
analytical expression for the distribution of concentra-
tion in the wall jet flow with the first order surface
chemical reaction:
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Eq. (17) implies that at a location where a jet emerges
from a slot, the mass flux is determined only by a rate
of a chemical reaction. Convective mass transfer in the
liquid acquires a more significant role as the distance
from a slot increases. The dependence of dimensionless
mass flux on the dimensionless coordinate X given by Eq.
(17) is shown in Fig. 2 for Sc¢ = 500, Re = 10, Da = 0.5,
1.0 and 1.5 for values of rheological parameter n equal
to 0.75, 1.0 and 1.75.
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