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Abstract

Mass transfer with a heterogeneous chemical reaction of the first order in a wall jet flow for non-Newtonian power-

law fluids is investigated. This problem is solved by the method of Laplace transform following the approach suggested

by Apelblat [Chem. Eng. J. 19 (1980) 19]. The solution is obtained in a closed analytical form.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Mass transfer with a heterogeneous chemical reaction

of the first order occurs in chemical engineering and

heterogeneous catalysis. The solution of a mass transfer

problem coupled with an irreversible chemical reaction

of the first order at a surface for a flow with a constant

velocity was obtained in [1,2] by Apelblat. Apelblat [1]

found the exact analytical solutions of a mass transfer

problem with a heterogeneous chemical reaction of the

first order for Couette flow and for a flow with a moving

interface or a generalized Couette flow. In [2] the role of

molecular diffusion in the direction of the convective

transport was investigated. Diffusion with interfacial

chemical reaction in a laminar channel flow was inves-

tigated by Cowherd and Haelscher [3]. Ghez [4] con-

sidered mass transport in a multicomponent system with

a surface chemical reaction of the first order. In [1,5,6] a

problem of mass transfer with a first-order chemical

reaction at the surface between a plate and infinitive
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fluid flow was solved analytically by three different

methods. In [7,8] the approach suggested in [1] for the

solution of mass transfer problem with the first-order

chemical reaction at the interface in the boundary layer

flow was applied for the solution of the similar problem

for Glauert flow and Falkner–Skan flow of a Newtonian

fluid. The velocity components in the equation of con-

vective diffusion used in [7,8] were adopted from [9–11].

A convective heat transfer problem with mixed bound-

ary conditions has the same mathematical form as a

convective mass transfer problem with a heterogeneous

chemical reaction of the first order. In all these studies

the analysis of mass transfer problems under conditions

of intermediate kinetics was restricted to a case of

Newtonian fluids. In the present study we considered the

laminar plane jet flow of a non-Newtonian power-law

fluid.
2. Formulation of the problem

Consider mass transfer between a solid surface and

an adjacent laminar wall jet flow of a non-Newtonian

power-law fluid. Semi-infinite jet emerges from a thin

slot and spreads along the surface (see Fig. 1). The

developed flow can be determined as a superposition of

two flows: a flow over a semi-infinite plane and a jet flow
ed.
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Fig. 1. Scheme of wall jet flow.
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in an infinite space. The soluble material with concen-

tration cðx; yÞ flows with a fluid and is dispersed under

the combined effects of diffusion and chemical reaction.

The hydrodynamic problem for a plane wall jet flow of a

power-law fluid in a semi-infinite domain of fluid was

solved in [12]. The following expressions for the velocity

components in x and y directions were derived:

u ¼ BwAð1þnÞ=3
w xDw � F 0ðgÞ;

v ¼ Að2n�1Þ=3
w k=q½ 	�1=ð1þnÞxEw � ð1=3Þ � DwF

�
þ CwgF 0�;

ð1Þ

where

g ¼ BwAð2�nÞ=3
w k=q½ 	�1=ð1þnÞxCw � y; Cw ¼ � 3

5n� 1
;

Dw ¼ � 2

5n� 1
;

Aw ¼ _m
qF ð1Þ

Bwd0
g1

� �Dw�Cw
Cw q

k

� � Dw
Cwðnþ1Þ

" # 3Cw
ðnþ1ÞCw�ð2�nÞDw

;

Bw ¼ ð5n� 1Þ�1=ð2n�1Þ; Ew ¼ � 1

2
Dw � 1;

g––similarity variable, k––power-law consistency index,

n––power-law behavior index in the constitutive relation

for power-law fluids sxy ¼ kðou=oyÞn, q––liquid density,

_m––mass flow rate for the jet slot, F ð1Þ––the value of
F ðgÞ at the boundary layer edge where g ¼ g1. The

unknown function F ðgÞ is determined from the solution

of an ordinary differential equation that was derived in

[13]:

ðd=dgÞ F 00 F 00		 		n�1j k
þ FF 00 þ 2F 02 ¼ 0; ð2Þ

where F ð0Þ ¼ F 0ð0Þ ¼ 0, F 00ð0Þ ¼ 1 and F 0ð1Þ ¼ 0,

primes denote derivatives with respect to g. For a case of
large Schmidt number, Sc ¼ ð _m=qdÞ3ðn�1Þ=ðnþ1Þ�
ðk=qÞ2=ðnþ1Þ=ðD � dðn�1Þ=ðnþ1ÞÞ, where d is a jet slot height,

D––coefficient of diffusion, the thickness of the concen-
tration boundary layer is considerably less than that of

the viscous boundary layer [6]. In this case it is reason-

able to assume the linear dependence of the longitudinal
velocity component inside a concentration boundary

layer upon y, i.e.,

u ¼ sðxÞ
k

� 1
n

� y; ð3Þ

where shear stress is determined as sðxÞ ¼
kAn

wB
2n
w a

n k=qð Þ�n=ð1þnÞxnðCwþDwÞ, a ¼ F 00ð0Þ. The transver-

sal velocity component is found from the equation of

continuity: ou=oxþ ov=oy ¼ 0. At steady state, neglect-

ing diffusion in the direction of the convective transport,

the mass transfer is governed by the following convec-

tive–diffusion equation:

sðxÞ
k

� 1
n

� y oc
ox

� y2

2n � k1=n sðxÞ½ 	ð1�nÞ=n osðxÞ
ox

� oc
oy

¼ D
o2c
oy2

;

ð4Þ

with the following initial and boundary conditions

c ¼ c0 for x ¼ 0 and y > 0; ð5Þ

c ¼ c0 for x > 0 and y ! 1; ð6Þ

D
oc
oy

¼ ksc for x > 0 and y ¼ 0; ð7Þ

where cðx; yÞ is a molar concentration at x, y, c0––con-
centration in the bulk of liquid, ks––rate constant of a

surface chemical reaction.
3. Solution

To solve the boundary value problem (4)–(7) let us

introduce new variables, related to x and y by the fol-

lowing formulas (see [6]):

Y ¼ 2�1=3
sðxÞ
k

�  1
2n

y; X ¼ 2a
Cw þ Dw þ 2

x
CwþDwþ2

2 ; ð8Þ

where X and Y are transformed coordinates in the

direction parallel and normal to the interface,

a ¼ 21=2A1=2
w Bwa1=2D k=qð Þ�1=2ð1þnÞ

. Then Eq. (4) reduces

to Leveque equation

Y
oC
oX

¼ o2C
oY 2

ð9Þ

where C ¼ c� c0. The boundary conditions (5)–(7) in

the new variables read:

C ¼ 0 for X ¼ 0 and Y ¼ 0; ð10Þ

C ¼ 0 for X > 0 and Y ! 1; ð11Þ

oC ¼ bX� CwþDw
CwþDwþ2C þ bX� CwþDw

CwþDwþ2c0 for Y ¼ 0; ð12Þ
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Fig. 2. Dependence of the dimensionless mass flux

ð1� q=ksc0Þ=k3 vs. dimensionless coordinate ~x for Re ¼ 10,

Sc ¼ 500, Eq. (17): (1) n ¼ 0:75, Da ¼ 0:5; (2) n ¼ 0:75,

Da ¼ 1:0; (3) n ¼ 0:75, Da ¼ 1:5; (4) n ¼ 1:0, Da ¼ 0:5; (5)

n ¼ 1:0, Da ¼ 1:0; (6) n ¼ 1:0, Da ¼ 1:5; (7) n ¼ 1:75, Da ¼ 0:5;

(8) n ¼ 1:75, Da ¼ 1:0; (9) n ¼ 1:75, Da ¼ 1:5.
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where

b ¼ 21=3ks2ðCwþDwÞ=ðCwþDwþ2Þ

� ðCw þ Dw þ 2Þ�ðCwþDwÞ=ðCwþDwþ2Þ � a�2=ðCwþDwþ2Þ:

Applying the Laplace transform to Eq. (9), using the

boundary conditions (10), (11) and following [1], one

obtains:

C X ; Yð Þ ¼
Z X

0

G tð Þ
Z 1

0

Y 1=2u1=6

2
ffiffiffi
3

p
p

 exp ½ � u Xð � tÞ	J1=3 /ð Þdudt; ð13Þ

where / ¼ 2u1=2 � Y 3=2=3, J1=3 /ð Þ––Bessel function of the

first kind. The unknown function GðX Þ is determined

from the remaining boundary condition (12). Eqs. (12)

and (13) yield the following integral Abel equation for

evaluating GðX Þ:Z X

0

G tð Þdt
X � tð Þ4=3

¼ cX� CwþDw
CwþDwþ2; ð14Þ

where c ¼ 35=6 � 2pc0b, CðzÞ––gamma function. The

solution of this Abel equation has the following form

(for details see [14], Chapter 6):

GðX Þ ¼ � ðCw þ DwÞ
ðCw þ Dw þ 2Þ

c3
1
2

2p


Z X

0

t1=3 Xð � tÞ�
2Cwþ2Dwþ2
CwþDwþ2 dt: ð15Þ

Eq. (15) is valid only for n > 0:7. Expressing the integral
in Eq. (15) through the gamma function (see, e.g., [15])
k3 ¼
3�

1
22

2
CwþDwþ2p

1
2C

1

3

� 
C

4� Cw � Dw

3ðCw þ Dw þ 2Þ

� 
C � Cw þ Dw

Cw þ Dw þ 2

� 
� Bw

g1

� 1
3

F ð1Þ
3

5n�1

ðCw þ Dw þ 2Þ
3
2 � C 2

3

� 
C

Cw þ Dw þ 8

3ðCw þ Dw þ 2Þ

� 
B

2
3
wa

1
3

: ð18Þ
and calculating the integrals in Eq. (13) we arrive at the

analytical expression for the distribution of concentra-

tion in the wall jet flow with the first order surface

chemical reaction:

c X ; Yð Þ
c0

¼ 1� 3
5
6k1X 7=3

Y
C

4� Cw � Dw

3ðCw þ Dw þ 2Þ

� 
X

4�Cw�Dw
3ðCwþDwþ2Þ

 exp

�
� Y 3

18X


W CwþDw�4

3ðCwþDwþ2Þ;�
1
6

�
� Y 3

9X


; ð16Þ

where
k1 ¼
cðCw þ DwÞC 1=3ð ÞC � ðCw þ DwÞ=ðCw þ Dw þ 2Þð Þ

6 � p3=2 � ðCw þ Dw þ 2Þ � C ðCw þ Dw þ 8Þ=ð3ðCw þ Dw þð
W‘;mðzÞ––Whittaker function. From Eq. (16) we obtain

the explicit formula for the mass flux density at a wall:

q
ks
c0 ¼ 1� k3

Da

Re
ð5nþ1Þ

ð1þnÞð5n�1Þ

~x
4þ5n

3ð5n�1Þ

Sc
1
3

; ð17Þ

where Da ¼ ksd=D––Damkohler number, Re ¼
_m=qdð Þ2�ndnðk=qÞ�1––Reynolds number, ~x ¼ x=d,
Eq. (17) implies that at a location where a jet emerges

from a slot, the mass flux is determined only by a rate

of a chemical reaction. Convective mass transfer in the

liquid acquires a more significant role as the distance

from a slot increases. The dependence of dimensionless

mass flux on the dimensionless coordinate ~x given by Eq.
(17) is shown in Fig. 2 for Sc ¼ 500, Re ¼ 10, Da ¼ 0:5,
1.0 and 1.5 for values of rheological parameter n equal

to 0.75, 1.0 and 1.75.
2ÞÞÞ ;
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